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0.1 Finite fields

Definition 1 :- A field with finitely many elements is called a finite field.

Proposition 1 :- Let F' be a finite field. Characteristics of F' is always a prime
number.

Proof :- F' is a finite field, so for each a € F in the group (F,+), |F|.a = 0.
Which assures characteristics of F is finite. Let char(F) = n for some n € N.
Suppose characteristics of F' is a composite number. There exists 1 < ny < n
and 1 < ng < n such that n = niny. Let ag € F such that nyag # 0. Such an
ap exists since char(F) = n.

= 0 =n.ap = (n1n2).ap = agna.ag + n2.ag + ... (ny times) +nq.ag = na.ap.1 +
ng.ag.14+... (ng times) +ns.ag.1 = na.ag.(1+1... (n; times) +1) = (n2.ap).(n1.1)

Note that n1.1 # 0 if not then for a € F |, ny.a = n1.(1 + 1+ ... (finite times)
+1) = n1.1 + ny.1 + ... (finite times) +ny.1 = 0, which implies n =char(F) <
n1 < n, a contradiction.

This shows that ni.ag is a zero divisor, a contradiction since a field does not
have any zero divisor.

Proposition 2 :- Let F' be a field. Intersection of any family of subfields of
F is a subfield of F.

Proof :- Easy.

Definition 2 :- A field containing no proper subfield is called a prime field.
The intersection of all subfields of a field F is called the prime subfield of F.
Indeed it follows from definition and proposition 2 that the prime subfield of F
is a prime field.

Proposition 3 :- Let F be a finite field with characteristics p. The prime subfield
of F is isomorphic to IF),

Proof :- Consider ¢ : Z — F defined by ¢(n) = n.1. Clearly ¢ is an ring
homomorphism. If a € pZ, then a = mp for some m € Z. This would imply
¢(a) = p(mp) = p(m).¢(p.1) =0, i.e. a € ker ¢. Conversely let b € ker ¢, then
¢(b) = 01ie. b.1=0. Clearly b = np for some n € Z if not, then b = np +m
for some m € {1,2,...p — 1}. Now b.1 = (np + m).1 which simplifies to m.1 =0
which is a contradiction as char(F) = p. So b € pZ and ker ¢ = pZ. By first
isomorphism theorem we have ¢(Z) is isomorphic to Z/pZ as a ring. Since Z/pZ
is a field isomorphic to F,, ¢(Z) is also a field. Let P be the prime subfield of
F. P contains 0 and 1 and is closed under addition, so n.1 € P for all n € Z
and ¢(Z) C P. ¢(Z) is a subfield of F hence contains P. Therefore P = ¢(Z)
is isomorphic to Fp,.

Proposition 4:- Let F' be a finite field. K be a subfield of F with |K| = q.
Then | K| = ¢™ where m = [F : K].

Proof :- F is a vector space over K. Since F is finite [F' : K] = m for some



m € N. Let {aj,as,...,a,,} be a basis for F over K. Therefore every a € F

can be written uniquely as a = aj.a1 + ... + aup.ayy Where aq,...qp, € K.
Each «; ,for i € {1,2,...,m}, has ¢ many choices, for each a € F we have a
unique combination of vy, ..., &, and conversely. Therefore |F| = |{(a1, ..., Qm) :

a1, 02, ..., Oy, € K}| = qm

Proposition 5 :- Let F be a finite field. |F| = p™ with p being a prime number
and m = [F : F,].

Proof :- Let P be the prime subfield of F. From proposition 3, F}, can be
regarded as a subfield of F. The assertion then follows from Proposition 4 by
taking F' for ' and F, for K.

Note 1:- We can also prove that for a finite field F, |F| = p™ where p =char(F)
and m is some natural number, by using group theoretic argument. Proof is as
follows. (F,+) is an abelian group with |F| = n for some n € N. For a fixed
a € F char(F').a =0, also n.a = 0 along with char(F') <n imply that char(F’)
divides n. char(F) = p, where p is a prime number by proposition 1. Since
pln and p is a prime number, there exists a subgroup of order p by Cauchy’s
theorem for abelian groups. Suppose ¢ be a prime number other than p that
divides n, again there exists a subgroup H of order ¢g. Since ¢ is a prime number,
H is cyclic, which means there exists ¢ € F such that H = (¢). |(¢)| = ¢, also
p.c = 0, this implies ¢ divides p. Hence ¢ = p a contradiction. Hence p is the
only prime number that divides n, so n = p™ where m is some natural number.

Proposition 6 :- Let F' be a finite field. (F* = F — {0},.) is a cyclic group.

Proof :- Let |F*| = m and exp(F*)=n. Since there exists a € F* such that
order(a) = n. By Lagrange’s Theorem n divides m, so n < m. Consider the
polynomial 2™ — 1 in F[x]. For all a € F*, ™ = 1 as n=exp(G) and 2™ — 1 can
have at most n roots, hence m < n. Therefore m=n=order(a), so (a) = F*.

Lemma 1 :- Let H be a finite group of order n, 1 be the identity of H. If
for all divisor d of n, the set Sq = {z € H : 2¢ = 1} has at most d elements,
Then H is cyclic.

Proof :- Let d be a divisor of n. Suppose a € H has order d. (a) = {1,q,...,a%"'}
is the cyclic subgroup generated by a. Note that for b € (a) satisfy b? = 1, so
(a) C S4. As |(a)| = d and Sy can have at most d elements, we have (a) = Sy.
All the elements of H of order d belongs to Sy and consequently in (a). (a) has
¢(d) elements of order d. Also (a) has ¢(d) no of elements of order d. Hence
the number of elements of H of order d is 0 or ¢(d).

Suppose for some d dividing n has no elements of order dy, then n = Zd|n o(d) >
2 dinazd, @(d) (as ¢(do) > 0) = n (as there is no element in H of order do), a
contradiction. Hence for each d dividing n has element of order d, in particular
there is an element of order n. Hence H is cyclic.

Alternative Proof of Proposition 6 :- Let H = F*, n = |F| —1. Let x € F"* and



d divides n. Clearly 2% = 1 has at most d solutions in F*, so F* is cyclic.

Proposition 7 :- Let F' be a finite field with char(F) = p. Let |F| = p™. Then
(i) F is a splitting field of the separable polynomial z?" —z over F,,. Thus F/F,
is Galois.

(ii) If o is defined as o(a) = a? for a € F, then o € Gal(F/F,)

(iii) (o) = Gal(F/Fp).

Proof :- For a = 0, a?" = a and for a € F*, al¥’| = 1 by Lagrange’s theo-
rem. So a?"~!' =1 or a?" = a. The elements of F are roots of 2?" — z and
these are the possible roots of zP" — x since 2" — z can have at most p” roots.
Hence F' is a splitting field over F, and F' is normal over Fp. (zP" — z) =
praP Tt —1=p.(p"LaP ") — 1 = —1 imply ged(2?" — 2, (2" —x)") =1, so
zP" — 2 does not have repeated roots and zP" — z is separable over F,. Thus
F/F, is Galois.

Let 0 : F' — F defined by o(a) = a?. Now for a,b € F, o(ab) = (ab)? =
al.b? = o(a)o(b) and

ola+b)=(a+bP =a?+C(p,1)a’ b+ ...+C(p,p—1)abP~L + b’ = aP + P =
o(a) + o(b) (as C(p,r) is a multiple of p for r = 1,2, .., — 1 and char(F) = p)
o being a field homomorphism, is injective and is surjective as F' is finite as
well. For ¢ =0 o(0) = 0” = 0 and for ¢ € F, by Lagrange’s theorem Pl =1
or o(c) = ¢? = c. Hence o € Gal(F/F)).

F/F, is Galois, so |Gal(F/F,)| = [F : F,] = n. It is sufficient if we show
that order of o (say m) is n. Suppose for 1 < m < n, ¢™ = I where I is the
identity map on F. Then for a € F, 0™(a) = I(a) or a?" = a. 2P" — x can
have maximum p™ no of roots however we have p™(> p™) no of roots which is
a contradiction and we are done.

Proposition 8 :- Any two finite fields of same cardinality are isomorphic.

Proof :- Let F' and L be two finite fields such that |F| = |L| = p™ for some
prime number p and natural number n. By proposition 7 Both F' and L are
splitting fields of 7" — z over F,,. By isomorphism extension theorem it follows
that F and L are isomorphic.

Proposition 9 :- Let F and K be two finite fields and K be an extension of
F. Then

(i) K/F is Galois.

(ii) Moreover if char(F) = p, |F| = p" and 7 : K — K be such that 7(a) = a?",
then (1) = Gal(K/F).

Proof :- K/F, is Galois by proposition 7. Hence K/F, is both normal and
separable over F,. AsF, C F C K, K is both normal and separable over F,
equivalently K is Galois over F.

Clearly Gal(K/F) < Gal(K/F,). Hence Gal(K/F) cyclic. Let [K : F] =
m =Gal(K/F) (as K/F is Galois) , [K : Fp] =t =Gal(K/F),) (as K/F), is Ga-
lois). As m divides t, Gal(K/F,) has exactly one subgroup of order m, which is



(00%) where (0¢) =Gal(K/F,). 0 : K — K defined by o(a) = a? is a generator
of Gal(K/F,) from proposition 7. Thus Gal(K/F) = (o) = (oF*Frl) where
[[I;E«f]] = [F:F,] =n (as |F| = p"). Gal(K/F) = (¢"). By induction on n we
can show that 0" (a) = a?" = 7(a).

Proposition 10 :- Let N be an algebraic closure of IF,,. Then

(i) given any positive integer n, there is a unique subfield of N of order p".

(ii) If K and L are subfields of N of orders p™ and p™ respectively, then K C L
iff m divides n.

(iii) When this(ii) happens, L is Galois over K with Galois group generated by
7(a) = a?”

Proof :- Cousider a positive integer n. The set of roots of the polynomial (say
S) zP" — x over F, belonging to N has p" elements. Now if a, 8,371 € S, then
o =aand (B~HP" = 71, which implies (aB~1)P" = a?" (71" = aB~ ! or
equivalently a3~! € S and (a+B)P" = aP" +P" = aP" + P (as char(N) = p)
= a+ B or equivalently a + g € S. S is a subfield of N with order p™. This
asserts that there exists a subfield of N with order p™. Let F' C N be a field
of order p". By proposition 7, F is a splitting field of z?" — z over F,. Hence
F contains all the roots of 27" — z or equivalently S C F. Every a € F satisfy
a’" —a =0, which implies F' C S. Therefore there is a unique subfield of N of
order p™.

Let K CLCN. [L:Fp)=[L:K|[K :F,],so[K :F,] divides [L : F,] or equiv-
alently m divides n. Conversely let m divides n, if b € K, then ¥*" = band b*" =
bpmk (t c N) _ b(pm)f‘ _ bpmhpm...(ktimes).pm’ _ ((((bpm)pm)pm)‘..(tfltimes))pm —b
(as b?" =b). Hence b € L by (i) of proposition 10.

when proposition 10(¢¢) happens, we are done by taking L for K and K for
F' in proposition 9.

0.2 (Galois groups

Definition 1:- Let F be a field. K be a field extension of F. A automorphism 7
of K is said to be F-automorphism if 7 fixes all the elements in F, i.e., 7(a) = a
for all a € F.

The Galois group K over F' is denoted by Gal(K/F') and is defined as the set
of all F-automorphisms of K.

Example 1:- Let ' = Q and K = Q(v/2). Let 0 € Gal(Q(v/2)/Q), for a,b € Q,
o(a+bv2) = a+bo(v/2) (as o fixes all elements in F, in particular a and b).
o is an homomorphism, so (0(v/2))? = o((v/2)?) = 0(2) = 2 . We have two
possible values O’(ﬁ) one is v/2 and —v/2. Conversely, if ola+ b\/?) =a+bv2
or a — by/2, ¢ is F-automorphism of K. Hence Gal(Q(v/2)/Q) = {01,032},
where o1 (a + bv/2) = a + b2 and o3(a + bv/2) = a — by/2.

Proposition 1 :- Let K = F(X) be a field extension of F' which is generated by
X. It o,7 € Gal(K/F) with o|x = 7|x, then 0 = 7.



Proof :- Let a € K. Then there exists n € N and a1, as, ...,a, € X such that a €
F(ai,as,...,a,). So there exists f,g € Flx1, 2, ...,2,] with a = H
and g(ay, az, ..., a,) # 0.

Let f(x1,2Z2, ., Tn) = D iy is... ,l":v’llxgz xin and

g(x1, 22, ,xn) S Ciy iy T2zt where each coefficient lies in F.

0’(0,) _ Z biyig,....in0(a1)o(az)2...0(an)™

- Ciyig,...,in0(a1)1o(a2)®2...0(an)in

biq iy, T(al)ilT(ag)h...T(an)i"
- Z Ciyig,..., m‘r(al)"l‘r(az)i?-..T(an)i"
multiplication)= 7(a).

(since o and 7 fix F , preserve addition and

Proposition 2 :- Let K and L be two field extensions of . 7 : K — L be
an F-automorphism. Let o € K be algebraic over F. If f(z) is a polynomial
over F' with f(o) = 0 then

(i) f(7(a)) = 0. In particular 7 permutes the roots of min(F, «)

(i) min(F, @) = min(F, 7(«)).

aotarz+...+anz". 7(f(@)) = 7(0) = 321, 7(a:)(1(e))" =

Proof :- Let f(z) =
= O (as T is a F-homomorphism, 7(a;) = a;, 7(0 ) =0)

Dio ai(T(a )
Hence f(r(a)) =
min(F, 7(a)) d1v1deb min(F, a) as min(F, «)(7(«)) = 0. min(F, «) is irreducible
and is not a constant polynomial, which implies min(F, «)=min(F, 7(a)).

Proposition 3 :- If [K : F)] is finite, then Gal(K/F) is finite.

Proof :- Let {a1,...,a,} be a basis of K over F' (where [K : F| = n). The
every element of K is a unique linear combination of aj, ..., a, which implies
K C F(aq,...ay,). Further more oy, ...a, € K and F C K, so F(aq,...an} C K.
K = F(aq,...a,). By proposition 1 any F-automorphism of K is determined
by where it sends «;, i € {1,2,....,n}. Let 7 € Gal(K/F) and a fixed ¢, from
proposition 2 it follows that 7 permutes the roots min(F, a;). 7(a;) can take at
most deg(min(F, a;)) values, also choices of i is finite, which shows that there
are finitely choices of F-automorphism of K. Hence Gal(K/F) is finite.

0.3 Some solved questions

Q1 :- Let n € N. Show that K is a splitting field over F for a set {f1, fa, .., fn}
of polynomials in F[z] if and only if K is a splitting field over F for the single

polynomial fi fo...fn.

Proof :- Let S = {f1, fa..., fn} and X be the set of all roots of all polynomial in S.
K be a splitting field over F for S. Then K = F(X) and for each i € {1,2,...,n},
fi splits over F. ie. fi=a;[];;)(z — o)) where j(i) € {1,...deg(fi)}, a; € I
and oy € K. f = fifo...fn (say) =[], H](l)( @j(4))- Since each factor of f
is linear f splits over F'.

If o« € K is aroot of f then f(a) = 0 1i.e. there exists one k such that f(o) =0



where 0 is the additive identity of F' which implies o € X. Conversely if a« € X,
for some k f(«) = 0 which shows f(«) = 0. This shows that the set of all roots
of f(say Y) is equals to X. Hence K = F(Y).

K is a splitting field of f.

Let K be a splitting field of f. let f; = a; Hj(i)(x — aj(;)) where a; € F
and a;(;) € L, L is a splitting field of S. f; divides f, (z — a;(;)) divides f i.e.
(r — o)) is a linear factor of f. Since f splits over K , it implies a;(;) € K.
fi splits over K. Also set of all roots of f is same as X. Hence K is a splitting
field of S.

Q2 - Let K be a splitting field of a set S of polynomials over F. If L is a
subfield of K containing F' for which each f € S splits over L, Show that L = K.

Proof :- Let X be the set of all roots of all f € S. Since K is a splitting
field of F', K = F(X). f € S splits over L, implies all roots of f lies in L i.e.
X Cc L. L(X) =U{L(a1,az,...,ay) : a1,as..,a, € X} =UL = L since X C L
we have L(ay,as...,a,) = L.

K=FX)CcLX)=LCK=L=K

Q3 - If F C L C K are fields and if K is a splitting field of S C F|x] over F ,
show that K is also a splitting field for S over L.

Proof :- Let f € S C F[z] C L[], since K is a splitting field of S over F
f=all;,(z — ;) for some a; € K and a € F C L. Hence f € S C L[z] splits
over K. Let X be the set of all roots of all f € S, then K = F(X). f €S
splits over K this implies all roots of f liesin Lie. X C K. K = F(X) C
LX) CK(X)=KasX C K. = K = L(X). K is asplitting field for S over L.

Q4(a) - Let K be algebraically closed field extension of F. Show that alge-
braic closure of F in K defined as {a € K : a is algebraic over F'} is an algebraic
closure of F.

(b) If A = {a € C: a is algebraic over Q}, then assuming that C is algebraically
closed, show that A is an algebraic closure of Q.

Proof :- Let F = {a € K : a is algebraic over F}. Clearly F C F since for
a € FCK, f(r) =z —a € F[z] with f(a) = 0. Let a,b € F. Then F(a,b)
being a finite extension of F, is algebraic over F. So F(a,b) C L(a,b) = L
and since a + b,a — b,ab,a/b € F(a,b), L is closed under the field operations.
Let M be an proper algebraic extension. M is an algebraic extension since F
is algebraic over F. Then there exists ¢ € M F such that c is algebraic over
F. ¢ € K since min(c, F') splits over K as K is an algebraically closed field
extension of F. This implies ¢ € F, which is a contradiction. Hence F does not
have any algebraic extension other than itself. Hence F is an algebraic closure
of F.

(b) We are done by taking F' = Q and K = C in 4(a).

Q5 - Give an example of fields FF C¢ K C L where L/K and K/L are nor-
mal but L/F is not normal.



Answer - Let F = Q, K = Q(v/2), L = v/2. [K : F] = 2 since min(Q,v/2) =
2?2 — 2. [L: F] =4 since min(Q(v/2) = 2* — 2

Q6 :- Let f(x) be an irreducible polynomial over F' of degree n and let K
be an field extension of F' such that [K : F] = m. If ged(n, m)=1, then show
that f is irreducible over K.

Proof :- If n = 1, then clearly f is irreducible over K. Without loss of gen-
erality we can assume that n > 1. Let o be a root of f(z). Consider K(«) as an
extension of K and F(«) as an extension of F. Note that deg(min(c, F)) = n
if not then deg(min(a, F)) < n. f(«) = 0 implies that min(ea, F') divides f.
Hence f(z) =min(«, F)(z)g(x) where ¢ € F(z) and deg(g) > 0, which is a
contradiction since f is irreducible over F. n =deg(min(a, F) = [F(«) : F].
Now [K(a) : F] = [K(a) : F(a)][F(a) : F]=[K(a) : K][K : F]

= n[K(a): F(a)] = m[K(a) : K]

= [K(a) : F(a)] = mE:K]

= n divides [K(«) : K| = deg(min(«, K)) = t(say) (n does not divide m if not
1 =ged(m,n) =n > 1 a contradiction) = n < t.

Suppose [ is reducible over K then there exists some f1(z), fa(x) € K|x] such
that f(z) = fi(x)fz(x) and 0 <deg(f1), deg(f2) < n. Since f(a) = 0 without
loss of generality we can assume f;(«) = 0. This implies min(«, K) divides f1,
hence deg(a, K) < deg(f1) <deg(f) =deg(min(c, F) < deg(min(«, K)

ie. t < deg(f1) < n <t a contradiction. Hence f is irreducible over K.

Q7 :-Show that z° — 923 4+ 152 + 6 is irreducible over Q(\/ﬁ, \/3)

Proof :- By taking 3 as a prime we see by Eisenstein’s criterion that x® — 93 +
152 + 6 is irreducible over Q. [Q(v/2,v3) : Q] = [Q(v2,v3) : Q(v2)][Q(v2)] =
2[Q(vZV3) : Q)] since min(v2,Q) = 22 — 2. [Q(VZV3) : Q(v2)] =
[Q(vV2 + v3) : Q(V2)] (as Q(V2,V3) = Q(V2 + V3)) = 2 since min(v2 +
V3,Q(v2))(2) = (z — v2)* = 3.

[Q(V2,v3) : Q] = 4. We are done by taking I/ = Q, K = Q(v/2,V3),
f(z) = 2% — 92 + 152 + 6 in Q6.



