
Project report on some basic topics of

Galois Theory

Jishu Das
Indian Institute of Science Education and Research (IISER), Kolkata

E-mail Id- jd13ms109@iiserkol.ac.in

July 29, 2016



Abstract

This is an project report about some basic concepts in Galois Theory, which I
studied under Dr. B. Sury of Indian Statistical Institute, Bangalore as a guide
during the period of time from 18th May 2016 to 30 June 2016. I would like to
thank Dr. B. Sury by giving his valuable time to guide me.

Signature of Guide
Dr. B. Sury

Signature of Student
Jishu Das



0.1 Finite fields

Definition 1 :- A field with finitely many elements is called a finite field.

Proposition 1 :- Let F be a finite field. Characteristics of F is always a prime
number.

Proof :- F is a finite field, so for each a ∈ F in the group (F,+), |F |.a = 0.
Which assures characteristics of F is finite. Let char(F ) = n for some n ∈ N .
Suppose characteristics of F is a composite number. There exists 1 < n1 < n
and 1 < n2 < n such that n = n1n2. Let a0 ∈ F such that n1a0 6= 0. Such an
a0 exists since char(F ) = n.
⇒ 0 = n.a0 = (n1n2).a0 = a0n2.a0 + n2.a0 + ... (n1 times) +n2.a0 = n2.a0.1 +
n2.a0.1+... (n1 times) +n2.a0.1 = n2.a0.(1+1... (n1 times) +1) = (n2.a0).(n1.1)

Note that n1.1 6= 0 if not then for a ∈ F , n1.a = n1.(1 + 1 + ... (finite times)
+1) = n1.1 + n1.1 + ... (finite times) +n1.1 = 0, which implies n =char(F ) ≤
n1 < n, a contradiction.
This shows that n1.a0 is a zero divisor, a contradiction since a field does not
have any zero divisor.

Proposition 2 :- Let F be a field. Intersection of any family of subfields of
F is a subfield of F.

Proof :- Easy.

Definition 2 :- A field containing no proper subfield is called a prime field.
The intersection of all subfields of a field F is called the prime subfield of F.
Indeed it follows from definition and proposition 2 that the prime subfield of F
is a prime field.

Proposition 3 :- Let F be a finite field with characteristics p. The prime subfield
of F is isomorphic to Fp

Proof :- Consider φ : Z → F defined by φ(n) = n.1. Clearly φ is an ring
homomorphism. If a ∈ pZ, then a = mp for some m ∈ Z. This would imply
φ(a) = φ(mp) = φ(m).φ(p.1) = 0, i.e. a ∈ ker φ. Conversely let b ∈ ker φ, then
φ(b) = 0 i.e. b.1 = 0. Clearly b = np for some n ∈ Z if not, then b = np + m
for some m ∈ {1, 2, ...p− 1}. Now b.1 = (np+m).1 which simplifies to m.1 = 0
which is a contradiction as char(F ) = p. So b ∈ pZ and ker φ = pZ. By first
isomorphism theorem we have φ(Z) is isomorphic to Z/pZ as a ring. Since Z/pZ
is a field isomorphic to Fp, φ(Z) is also a field. Let P be the prime subfield of
F . P contains 0 and 1 and is closed under addition, so n.1 ∈ P for all n ∈ Z
and φ(Z) ⊂ P . φ(Z) is a subfield of F hence contains P . Therefore P = φ(Z)
is isomorphic to Fp.

Proposition 4:- Let F be a finite field. K be a subfield of F with |K| = q.
Then |K| = qm where m = [F : K].

Proof :- F is a vector space over K. Since F is finite [F : K] = m for some
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m ∈ N. Let {a1, a2, ..., am} be a basis for F over K. Therefore every a ∈ F
can be written uniquely as a = α1.a1 + ... + αm.am where α1, ...αm ∈ K.
Each αi ,for i ∈ {1, 2, ...,m}, has q many choices, for each a ∈ F we have a
unique combination of α1, ..., αm and conversely. Therefore |F | = |{(α1, ..., αm) :
α1, α2, ..., αm ∈ K}| = qm.

Proposition 5 :- Let F be a finite field. |F | = pm with p being a prime number
and m = [F : Fp].

Proof :- Let P be the prime subfield of F . From proposition 3, Fp can be
regarded as a subfield of F . The assertion then follows from Proposition 4 by
taking F for F and Fp for K.

Note 1:- We can also prove that for a finite field F , |F | = pm where p =char(F )
and m is some natural number, by using group theoretic argument. Proof is as
follows. (F,+) is an abelian group with |F | = n for some n ∈ N. For a fixed
a ∈ F char(F ).a = 0 , also n.a = 0 along with char(F ) ≤ n imply that char(F )
divides n. char(F ) = p, where p is a prime number by proposition 1. Since
p|n and p is a prime number, there exists a subgroup of order p by Cauchy’s
theorem for abelian groups. Suppose q be a prime number other than p that
divides n, again there exists a subgroup H of order q. Since q is a prime number,
H is cyclic, which means there exists c ∈ F such that H = (c). |(c)| = q, also
p.c = 0, this implies q divides p. Hence q = p a contradiction. Hence p is the
only prime number that divides n, so n = pm where m is some natural number.

Proposition 6 :- Let F be a finite field. (F ∗ = F − {0}, .) is a cyclic group.

Proof :- Let |F ∗| = m and exp(F ∗)=n. Since there exists a ∈ F ∗ such that
order(a) = n. By Lagrange’s Theorem n divides m, so n ≤ m. Consider the
polynomial xn − 1 in F[x]. For all a ∈ F ∗, an = 1 as n=exp(G) and xn − 1 can
have at most n roots, hence m ≤ n. Therefore m=n=order(a), so (a) = F ∗.

Lemma 1 :- Let H be a finite group of order n, 1 be the identity of H. If
for all divisor d of n, the set Sd = {x ∈ H : xd = 1} has at most d elements,
Then H is cyclic.

Proof :- Let d be a divisor of n. Suppose a ∈ H has order d. (a) = {1, a, ..., ad−1}
is the cyclic subgroup generated by a. Note that for b ∈ (a) satisfy bd = 1, so
(a) ⊂ Sd. As |(a)| = d and Sd can have at most d elements, we have (a) = Sd.
All the elements of H of order d belongs to Sd and consequently in (a). (a) has
φ(d) elements of order d. Also (a) has φ(d) no of elements of order d. Hence
the number of elements of H of order d is 0 or φ(d).
Suppose for some d0 dividing n has no elements of order d0, then n =

∑
d|n φ(d) >∑

d|n,d6=d0 φ(d) (as φ(d0) > 0) = n (as there is no element in H of order d0), a
contradiction. Hence for each d dividing n has element of order d, in particular
there is an element of order n. Hence H is cyclic.

Alternative Proof of Proposition 6 :- Let H = F ∗, n = |F | − 1. Let x ∈ F ∗ and
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d divides n. Clearly xd = 1 has at most d solutions in F ∗, so F ∗ is cyclic.

Proposition 7 :- Let F be a finite field with char(F ) = p. Let |F | = pn. Then
(i) F is a splitting field of the separable polynomial xp

n−x over Fp. Thus F/Fp
is Galois.
(ii) If σ is defined as σ(a) = ap for a ∈ F , then σ ∈ Gal(F/Fp)
(iii) (σ) = Gal(F/Fp).

Proof :- For a = 0, ap
n

= a and for a ∈ F ∗, a|F
∗| = 1 by Lagrange’s theo-

rem. So ap
n−1 = 1 or ap

n

= a. The elements of F are roots of xp
n − x and

these are the possible roots of xp
n − x since xp

n − x can have at most pn roots.
Hence F is a splitting field over Fp and F is normal over Fp. (xp

n − x)′ =
pn.xp

n−1 − 1 = p.(pn−1.xp
n−1)− 1 = −1 imply gcd(xp

n − x, (xpn − x)′) = 1, so
xp

n − x does not have repeated roots and xp
n − x is separable over Fp. Thus

F/Fp is Galois.

Let σ : F → F defined by σ(a) = ap. Now for a, b ∈ F , σ(ab) = (ab)p =
ap.bp = σ(a)σ(b) and
σ(a+ b) = (a+ b)p = ap +C(p, 1)ap−1b+ ...+C(p, p− 1)abp−1 + bp = ap + bp =
σ(a) + σ(b) (as C(p, r) is a multiple of p for r = 1, 2, .., r − 1 and char(F ) = p)
σ being a field homomorphism, is injective and is surjective as F is finite as
well. For c = 0 σ(0) = 0p = 0 and for c ∈ F∗p, by Lagrange’s theorem cp−1 = 1
or σ(c) = cp = c. Hence σ ∈ Gal(F/Fp).

F/Fp is Galois, so |Gal(F/Fp)| = [F : Fp] = n. It is sufficient if we show
that order of σ (say m) is n. Suppose for 1 ≤ m < n, σm = I where I is the
identity map on F . Then for a ∈ F , σm(a) = I(a) or ap

m

= a. xp
m − x can

have maximum pm no of roots however we have pn(> pm) no of roots which is
a contradiction and we are done.

Proposition 8 :- Any two finite fields of same cardinality are isomorphic.

Proof :- Let F and L be two finite fields such that |F | = |L| = pn for some
prime number p and natural number n. By proposition 7 Both F and L are
splitting fields of xp

n −x over Fp. By isomorphism extension theorem it follows
that F and L are isomorphic.

Proposition 9 :- Let F and K be two finite fields and K be an extension of
F . Then
(i) K/F is Galois.
(ii) Moreover if char(F ) = p, |F | = pn and τ : K → K be such that τ(a) = ap

n

,
then (τ) = Gal(K/F ).

Proof :- K/Fp is Galois by proposition 7. Hence K/Fp is both normal and
separable over Fp. As Fp ⊂ F ⊂ K, K is both normal and separable over F ,
equivalently K is Galois over F .

Clearly Gal(K/F ) ≤ Gal(K/Fp). Hence Gal(K/F ) cyclic. Let [K : F ] =
m =Gal(K/F ) (as K/F is Galois) , [K : Fp] = t =Gal(K/Fp) (as K/Fp is Ga-
lois). As m divides t, Gal(K/Fp) has exactly one subgroup of order m, which is
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(σ
t
m
0 ) where (σ0) =Gal(K/Fp). σ : K → K defined by σ(a) = ap is a generator

of Gal(K/Fp) from proposition 7. Thus Gal(K/F ) = (σ
t
m ) = (σ[F :Fp]) where

[K:Fp]
[K:F ] = [F : Fp] = n (as |F | = pn). Gal(K/F ) = (σn). By induction on n we

can show that σn(a) = ap
n

= τ(a).

Proposition 10 :- Let N be an algebraic closure of Fp. Then
(i) given any positive integer n, there is a unique subfield of N of order pn.
(ii) If K and L are subfields of N of orders pm and pn respectively, then K ⊂ L
iff m divides n.
(iii) When this(ii) happens, L is Galois over K with Galois group generated by
τ(a) = ap

m

Proof :- Consider a positive integer n. The set of roots of the polynomial (say
S) xp

n − x over Fp belonging to N has pn elements. Now if α, β, β−1 ∈ S, then
αp

n

= α and (β−1)p
n

= β−1 , which implies (αβ−1)p
n

= αp
n

(β−1)p
n

= αβ−1 or
equivalently αβ−1 ∈ S and (α+β)p

n

= αp
n

+βp
n

= αp
n

+βp
n

(as char(N) = p)
= α + β or equivalently α + β ∈ S. S is a subfield of N with order pn. This
asserts that there exists a subfield of N with order pn. Let F ⊂ N be a field
of order pn. By proposition 7, F is a splitting field of xp

n − x over Fp. Hence
F contains all the roots of xp

n − x or equivalently S ⊂ F . Every a ∈ F satisfy
ap

n − a = 0 , which implies F ⊂ S. Therefore there is a unique subfield of N of
order pn.

Let K ⊂ L ⊂ N . [L : Fp] = [L : K][K : Fp] , so [K : Fp] divides [L : Fp] or equiv-
alentlym divides n. Conversely letm divides n, if b ∈ K, then bp

m

= b and bp
n

=

bp
mk

(t ∈ N) = b(p
m)t = bp

m.pm...(ktimes).pm = ((((bp
m

)p
m

)p
m

)...(t−1times))p
m

= b
(as bp

m

= b). Hence b ∈ L by (i) of proposition 10.

when proposition 10(ii) happens, we are done by taking L for K and K for
F in proposition 9.

0.2 Galois groups

Definition 1:- Let F be a field. K be a field extension of F . A automorphism τ
of K is said to be F -automorphism if τ fixes all the elements in F , i.e., τ(a) = a
for all a ∈ F .
The Galois group K over F is denoted by Gal(K/F ) and is defined as the set
of all F -automorphisms of K.

Example 1:- Let F = Q and K = Q(
√

2). Let σ ∈ Gal(Q(
√

2)/Q), for a, b ∈ Q,
σ(a + b

√
2) = a + bσ(

√
2) (as σ fixes all elements in F , in particular a and b).

σ is an homomorphism, so (σ(
√

2))2 = σ((
√

2)2) = σ(2) = 2 . We have two
possible values σ(

√
2) one is

√
2 and −

√
2. Conversely, if σ(a+ b

√
2) = a+ b

√
2

or a− b
√

2, σ is F -automorphism of K. Hence Gal(Q(
√

2)/Q) = {σ1, σ2},
where σ1(a+ b

√
2) = a+ b

√
2 and σ2(a+ b

√
2) = a− b

√
2.

Proposition 1 :- Let K = F (X) be a field extension of F which is generated by
X. If σ, τ ∈ Gal(K/F ) with σ|X = τ |X , then σ = τ .
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Proof :- Let a ∈ K. Then there exists n ∈ N and a1, a2, ..., an ∈ X such that a ∈
F (a1, a2, ..., an). So there exists f, g ∈ F [x1, x2, ..., xn] with a = f(a1,a2,...,an)

g(a1,a2,...,an)

and g(a1, a2, ..., an) 6= 0.
Let f(x1, x2, ..., xn) =

∑
bi1,i2,...,inx

i1
1 x

i2
2 ...x

in
n and

g(x1, x2, ..., xn) =
∑
ci1,i2,...,inx

i1
1 x

i2
2 ...x

in
n where each coefficient lies in F .

σ(a) =
∑ bi1,i2,...,inσ(a1)

i1σ(a2)
i2 ...σ(an)

in

ci1,i2,...,inσ(a1)
i1σ(a2)i2 ...σ(an)in

=
∑ bi1,i2,...,inτ(a1)

i1τ(a2)
i2 ...τ(an)

in

ci1,i2,...,inτ(a1)
i1τ(a2)i2 ...τ(an)in

(since σ and τ fix F , preserve addition and

multiplication)= τ(a).

Proposition 2 :- Let K and L be two field extensions of F . τ : K → L be
an F -automorphism. Let α ∈ K be algebraic over F . If f(x) is a polynomial
over F with f(α) = 0 then
(i) f(τ(α)) = 0. In particular τ permutes the roots of min(F, α)
(ii) min(F, α) = min(F, τ(α)).

Proof :- Let f(x) = a0+a1x+ ...+anx
n. τ(f(α)) = τ(0) =

∑n
i=0 τ(ai)(τ(α))i =∑n

i=0 ai(τ(α))i = 0 (as τ is a F -homomorphism, τ(ai) = ai, τ(0) = 0)
Hence f(τ(α)) = 0
min(F, τ(α)) divides min(F, α) as min(F, α)(τ(α)) = 0. min(F, α) is irreducible
and is not a constant polynomial, which implies min(F, α)=min(F, τ(α)).

Proposition 3 :- If [K : F ] is finite, then Gal(K/F ) is finite.

Proof :- Let {α1, ..., αn} be a basis of K over F (where [K : F ] = n). The
every element of K is a unique linear combination of α1, ..., αn which implies
K ⊂ F (α1, ...αn). Further more α1, ...αn ∈ K and F ⊂ K, so F (α1, ...αn} ⊂ K.
K = F (α1, ...αn). By proposition 1 any F -automorphism of K is determined
by where it sends αi, i ∈ {1, 2, ..., n}. Let τ ∈ Gal(K/F ) and a fixed i, from
proposition 2 it follows that τ permutes the roots min(F, αi). τ(αi) can take at
most deg(min(F, αi)) values, also choices of i is finite, which shows that there
are finitely choices of F -automorphism of K. Hence Gal(K/F ) is finite.

0.3 Some solved questions

Q1 :- Let n ∈ N. Show that K is a splitting field over F for a set {f1, f2, ..., fn}
of polynomials in F [x] if and only if K is a splitting field over F for the single
polynomial f1f2...fn.

Proof :- Let S = {f1, f2..., fn} andX be the set of all roots of all polynomial in S.
K be a splitting field over F for S. Then K = F (X) and for each i ∈ {1, 2, ..., n},
fi splits over F . i.e. fi = ai

∏
j(i)(x− αj(i)) where j(i) ∈ {1, ...deg(fi)}, ai ∈ F

and αj(i) ∈ K. f = f1f2...fn (say) =
∏
i

∏
j(i)(x−αj(i)). Since each factor of f

is linear f splits over F .
If α ∈ K is a root of f then f(α) = 0 i.e. there exists one k such that fk(α) = 0
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where 0 is the additive identity of F which implies α ∈ X. Conversely if α ∈ X,
for some k fk(α) = 0 which shows f(α) = 0. This shows that the set of all roots
of f(say Y ) is equals to X. Hence K = F (Y ).
K is a splitting field of f .

Let K be a splitting field of f . let fi = ai
∏
j(i)(x − αj(i)) where ai ∈ F

and αj(i) ∈ L, L is a splitting field of S. fi divides f , (x − αj(i)) divides f i.e.
(x − αj(i)) is a linear factor of f . Since f splits over K , it implies αj(i) ∈ K.
fi splits over K. Also set of all roots of f is same as X. Hence K is a splitting
field of S.

Q2 :- Let K be a splitting field of a set S of polynomials over F . If L is a
subfield of K containing F for which each f ∈ S splits over L, Show that L = K.

Proof :- Let X be the set of all roots of all f ∈ S. Since K is a splitting
field of F , K = F (X). f ∈ S splits over L, implies all roots of f lies in L i.e.
X ⊂ L. L(X) = ∪{L(a1, a2, ..., an) : a1, a2..., an ∈ X} = ∪L = L since X ⊂ L
we have L(a1, a2..., an) = L.
K = F (X) ⊂ L(X) = L ⊂ K ⇒ L = K

Q3 :- If F ⊆ L ⊆ K are fields and if K is a splitting field of S ⊆ F [x] over F ,
show that K is also a splitting field for S over L.

Proof :- Let f ∈ S ⊆ F [x] ⊆ L[x], since K is a splitting field of S over F
f = a

∏
i(x − αi) for some αi ∈ K and a ∈ F ⊆ L. Hence f ∈ S ⊆ L[x] splits

over K. Let X be the set of all roots of all f ∈ S, then K = F (X). f ∈ S
splits over K this implies all roots of f lies in L i.e. X ⊂ K. K = F (X) ⊆
L(X) ⊆ K(X) = K as X ⊂ K. ⇒ K = L(X). K is a splitting field for S over L.

Q4(a) :- Let K be algebraically closed field extension of F . Show that alge-
braic closure of F in K defined as {a ∈ K : a is algebraic over F} is an algebraic
closure of F .
(b) If A = {a ∈ C : a is algebraic over Q}, then assuming that C is algebraically
closed, show that A is an algebraic closure of Q.

Proof :- Let F = {a ∈ K : a is algebraic over F}. Clearly F ⊂ F since for
a ∈ F ⊂ K, f(x) = x − a ∈ F [x] with f(a) = 0. Let a, b ∈ F . Then F (a, b)
being a finite extension of F , is algebraic over F . So F (a, b) ⊂ L(a, b) = L
and since a + b, a − b, ab, a/b ∈ F (a, b), L is closed under the field operations.
Let M be an proper algebraic extension. M is an algebraic extension since F
is algebraic over F . Then there exists c ∈ M F such that c is algebraic over
F . c ∈ K since min(c, F ) splits over K as K is an algebraically closed field
extension of F . This implies c ∈ F , which is a contradiction. Hence F does not
have any algebraic extension other than itself. Hence F is an algebraic closure
of F .
(b) We are done by taking F = Q and K = C in 4(a).

Q5 :- Give an example of fields F ⊂ K ⊂ L where L/K and K/L are nor-
mal but L/F is not normal.

6



Answer :- Let F = Q, K = Q(
√

2), L = 4
√

2. [K : F ] = 2 since min(Q,
√

2) =
x2 − 2. [L : F ] = 4 since min(Q( 4

√
2) = x4 − 2

Q6 :- Let f(x) be an irreducible polynomial over F of degree n and let K
be an field extension of F such that [K : F ] = m. If gcd(n,m)=1, then show
that f is irreducible over K.

Proof :- If n = 1, then clearly f is irreducible over K. Without loss of gen-
erality we can assume that n > 1. Let α be a root of f(x). Consider K(α) as an
extension of K and F (α) as an extension of F . Note that deg(min(c, F )) = n
if not then deg(min(α, F )) < n. f(α) = 0 implies that min(α, F ) divides f .
Hence f(x) =min(α, F )(x)g(x) where g ∈ F (x) and deg(g) > 0, which is a
contradiction since f is irreducible over F . n =deg(min(α, F ) = [F (α) : F ].
Now [K(α) : F ] = [K(α) : F (α)][F (α) : F ] = [K(α) : K][K : F ]
⇒ n[K(α) : F (α)] = m[K(α) : K]

⇒ [K(α) : F (α)] = m[K(α):K]
n

⇒ n divides [K(α) : K] = deg(min(α,K)) = t(say) (n does not divide m if not
1 =gcd(m,n) = n > 1 a contradiction) ⇒ n ≤ t.

Suppose f is reducible over K then there exists some f1(x), f2(x) ∈ K[x] such
that f(x) = f1(x)f2(x) and 0 <deg(f1), deg(f2) < n. Since f(α) = 0 without
loss of generality we can assume f1(α) = 0. This implies min(α,K) divides f1,
hence deg(α,K) ≤ deg(f1) <deg(f) =deg(min(α, F ) ≤ deg(min(α,K)
i.e. t ≤ deg(f1) < n ≤ t a contradiction. Hence f is irreducible over K.

Q7 :-Show that x5 − 9x3 + 15x+ 6 is irreducible over Q(
√

2,
√

3).

Proof :- By taking 3 as a prime we see by Eisenstein’s criterion that x5− 9x3 +
15x+ 6 is irreducible over Q. [Q(

√
2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)][Q(
√

2)] =
2[Q(
√

2,
√

3) : Q(
√

2)] since min(
√

2,Q) = x2 − 2. [Q(
√

2,
√

3) : Q(
√

2)] =
[Q(
√

2 +
√

3) : Q(
√

2)] (as Q(
√

2,
√

3) = Q(
√

2 +
√

3)) = 2 since min(
√

2 +√
3,Q(

√
2))(x) = (x−

√
2)2 − 3.

[Q(
√

2,
√

3) : Q] = 4. We are done by taking F = Q, K = Q(
√

2,
√

3),
f(x) = x5 − 9x3 + 15x+ 6 in Q6.
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