Project report on some basic topics of Galois Theory

Jishu Das Indian Institute of Science Education and Research (IISER), Kolkata E-mail Id- jd13ms109@iiserkol.ac.in

July 29, 2016

Abstract

This is an project report about some basic concepts in Galois Theory, which I studied under Dr. B. Sury of Indian Statistical Institute, Bangalore as a guide during the period of time from 18th May 2016 to 30 June 2016. I would like to thank Dr. B. Sury by giving his valuable time to guide me.

Signature of Guide Dr. B. Sury

Signature of Student Jishu Das

0.1 Finite fields

Definition 1 :- A field with finitely many elements is called a finite field.

Proposition 1 :- Let F be a finite field. Characteristics of F is always a prime number.

Proof :- F is a finite field, so for each $a \in F$ in the group (F, +), |F|.a = 0. Which assures characteristics of F is finite. Let $\operatorname{char}(F) = n$ for some $n \in N$. Suppose characteristics of F is a composite number. There exists $1 < n_1 < n$ and $1 < n_2 < n$ such that $n = n_1 n_2$. Let $a_0 \in F$ such that $n_1 a_0 \neq 0$. Such an a_0 exists since $\operatorname{char}(F) = n$.

 $\Rightarrow 0 = n.a_0 = (n_1 n_2).a_0 = a_0 n_2.a_0 + n_2.a_0 + \dots (n_1 \text{ times}) + n_2.a_0 = n_2.a_0.1 + n_2.a_0.1 + \dots (n_1 \text{ times}) + n_2.a_0.1 = n_2.a_0.(1+1\dots (n_1 \text{ times}) + 1) = (n_2.a_0).(n_1.1)$

Note that $n_1.1 \neq 0$ if not then for $a \in F$, $n_1.a = n_1.(1 + 1 + ...$ (finite times) $+1) = n_1.1 + n_1.1 + ...$ (finite times) $+n_1.1 = 0$, which implies $n = \operatorname{char}(F) \leq n_1 < n$, a contradiction.

This shows that $n_1.a_0$ is a zero divisor, a contradiction since a field does not have any zero divisor.

Proposition 2 :- Let F be a field. Intersection of any family of subfields of F is a subfield of F.

Proof :- Easy.

Definition 2 :- A field containing no proper subfield is called a prime field. The intersection of all subfields of a field F is called the prime subfield of F. Indeed it follows from definition and proposition 2 that the prime subfield of F is a prime field.

Proposition 3 :- Let F be a finite field with characteristics p. The prime subfield of F is isomorphic to \mathbb{F}_p

Proof :- Consider $\phi : \mathbb{Z} \to F$ defined by $\phi(n) = n.1$. Clearly ϕ is an ring homomorphism. If $a \in p\mathbb{Z}$, then a = mp for some $m \in \mathbb{Z}$. This would imply $\phi(a) = \phi(mp) = \phi(m) \cdot \phi(p.1) = 0$, i.e. $a \in \ker \phi$. Conversely let $b \in \ker \phi$, then $\phi(b) = 0$ i.e. b.1 = 0. Clearly b = np for some $n \in \mathbb{Z}$ if not, then b = np + mfor some $m \in \{1, 2, ..., p - 1\}$. Now b.1 = (np + m).1 which simplifies to m.1 = 0which is a contradiction as $\operatorname{char}(F) = p$. So $b \in p\mathbb{Z}$ and $\ker \phi = p\mathbb{Z}$. By first isomorphism theorem we have $\phi(\mathbb{Z})$ is isomorphic to $\mathbb{Z}/p\mathbb{Z}$ as a ring. Since $\mathbb{Z}/p\mathbb{Z}$ is a field isomorphic to \mathbb{F}_p , $\phi(\mathbb{Z})$ is also a field. Let P be the prime subfield of F. P contains 0 and 1 and is closed under addition, so $n.1 \in P$ for all $n \in \mathbb{Z}$ and $\phi(\mathbb{Z}) \subset P$. $\phi(\mathbb{Z})$ is a subfield of F hence contains P. Therefore $P = \phi(\mathbb{Z})$ is isomorphic to \mathbb{F}_p .

Proposition 4:- Let F be a finite field. K be a subfield of F with |K| = q. Then $|K| = q^m$ where m = [F : K].

Proof :- F is a vector space over K. Since F is finite [F:K] = m for some

 $m \in \mathbb{N}$. Let $\{a_1, a_2, ..., a_m\}$ be a basis for F over K. Therefore every $a \in F$ can be written uniquely as $a = \alpha_1.a_1 + ... + \alpha_m.a_m$ where $\alpha_1, ..., \alpha_m \in K$. Each α_i , for $i \in \{1, 2, ..., m\}$, has q many choices, for each $a \in F$ we have a unique combination of $\alpha_1, ..., \alpha_m$ and conversely. Therefore $|F| = |\{(\alpha_1, ..., \alpha_m) : \alpha_1, \alpha_2, ..., \alpha_m \in K\}| = q^m$.

Proposition 5 :- Let F be a finite field. $|F| = p^m$ with p being a prime number and $m = [F : \mathbb{F}_p]$.

Proof :- Let P be the prime subfield of F. From proposition 3, F_p can be regarded as a subfield of F. The assertion then follows from Proposition 4 by taking F for F and \mathbb{F}_p for K.

Note 1:- We can also prove that for a finite field F, $|F| = p^m$ where $p = \operatorname{char}(F)$ and m is some natural number, by using group theoretic argument. Proof is as follows. (F, +) is an abelian group with |F| = n for some $n \in \mathbb{N}$. For a fixed $a \in F \operatorname{char}(F).a = 0$, also n.a = 0 along with $\operatorname{char}(F) \leq n$ imply that $\operatorname{char}(F)$ divides n. $\operatorname{char}(F) = p$, where p is a prime number by proposition 1. Since p|n and p is a prime number, there exists a subgroup of order p by Cauchy's theorem for abelian groups. Suppose q be a prime number other than p that divides n, again there exists a subgroup H of order q. Since q is a prime number, H is cyclic, which means there exists $c \in F$ such that H = (c). |(c)| = q, also p.c = 0, this implies q divides p. Hence q = p a contradiction. Hence p is the only prime number that divides n, so $n = p^m$ where m is some natural number.

Proposition 6 :- Let F be a finite field. $(F^* = F - \{0\}, .)$ is a cyclic group.

Proof :- Let $|F^*| = m$ and $\exp(F^*)=n$. Since there exists $a \in F^*$ such that $\operatorname{order}(a) = n$. By Lagrange's Theorem n divides m, so $n \leq m$. Consider the polynomial $x^n - 1$ in F[x]. For all $a \in F^*$, $a^n = 1$ as $n = \exp(G)$ and $x^n - 1$ can have at most n roots, hence $m \leq n$. Therefore $m = n = \operatorname{order}(a)$, so $(a) = F^*$.

Lemma 1 :- Let H be a finite group of order n, 1 be the identity of H. If for all divisor d of n, the set $S_d = \{x \in H : x^d = 1\}$ has at most d elements, Then H is cyclic.

Proof :- Let d be a divisor of n. Suppose $a \in H$ has order d. $(a) = \{1, a, ..., a^{d-1}\}$ is the cyclic subgroup generated by a. Note that for $b \in (a)$ satisfy $b^d = 1$, so $(a) \subset S_d$. As |(a)| = d and S_d can have at most d elements, we have $(a) = S_d$. All the elements of H of order d belongs to S_d and consequently in (a). (a) has $\phi(d)$ elements of order d. Also (a) has $\phi(d)$ no of elements of order d. Hence the number of elements of H of order d is 0 or $\phi(d)$.

Suppose for some d_0 dividing n has no elements of order d_0 , then $n = \sum_{d|n} \phi(d) > \sum_{d|n,d\neq d_0} \phi(d)$ (as $\phi(d_0) > 0$) = n (as there is no element in H of order d_0), a contradiction. Hence for each d dividing n has element of order d, in particular there is an element of order n. Hence H is cyclic.

Alternative Proof of Proposition 6 :- Let $H = F^*$, n = |F| - 1. Let $x \in F^*$ and

d divides n. Clearly $x^d = 1$ has at most d solutions in F^* , so F^* is cyclic.

Proposition 7 :- Let F be a finite field with $\operatorname{char}(F) = p$. Let $|F| = p^n$. Then (i) F is a splitting field of the separable polynomial $x^{p^n} - x$ over \mathbb{F}_p . Thus F/\mathbb{F}_p is Galois.

(ii) If σ is defined as $\sigma(a) = a^p$ for $a \in F$, then $\sigma \in \operatorname{Gal}(F/\mathbb{F}_p)$ (iii) $(\sigma) = \operatorname{Gal}(F/\mathbb{F}_p)$.

Proof :- For a = 0, $a^{p^n} = a$ and for $a \in F^*$, $a^{|F^*|} = 1$ by Lagrange's theorem. So $a^{p^n-1} = 1$ or $a^{p^n} = a$. The elements of F are roots of $x^{p^n} - x$ and these are the possible roots of $x^{p^n} - x$ since $x^{p^n} - x$ can have at most p^n roots. Hence F is a splitting field over \mathbb{F}_p and F is normal over \mathbb{F}_p . $(x^{p^n} - x)' = p^n x^{p^n-1} - 1 = p.(p^{n-1}.x^{p^n-1}) - 1 = -1$ imply $gcd(x^{p^n} - x, (x^{p^n} - x)') = 1$, so $x^{p^n} - x$ does not have repeated roots and $x^{p^n} - x$ is separable over \mathbb{F}_p . Thus F/\mathbb{F}_p is Galois.

Let $\sigma : F \to F$ defined by $\sigma(a) = a^p$. Now for $a, b \in F$, $\sigma(ab) = (ab)^p = a^p \cdot b^p = \sigma(a)\sigma(b)$ and

 $\sigma(a+b) = (a+b)^p = a^p + C(p,1)a^{p-1}b + \ldots + C(p,p-1)ab^{p-1} + b^p = a^p + b^p = \sigma(a) + \sigma(b) \text{ (as } C(p,r) \text{ is a multiple of } p \text{ for } r = 1,2,\ldots,r-1 \text{ and } \operatorname{char}(F) = p) \\ \sigma \text{ being a field homomorphism, is injective and is surjective as } F \text{ is finite as well. For } c = 0 \ \sigma(0) = 0^p = 0 \text{ and for } c \in \mathbb{F}_p^*, \text{ by Lagrange's theorem } c^{p-1} = 1 \\ \text{ or } \sigma(c) = c^p = c. \text{ Hence } \sigma \in \operatorname{Gal}(F/\mathbb{F}_p).$

 F/\mathbb{F}_p is Galois, so $|\operatorname{Gal}(F/\mathbb{F}_p)| = [F : \mathbb{F}_p] = n$. It is sufficient if we show that order of σ (say m) is n. Suppose for $1 \leq m < n$, $\sigma^m = I$ where I is the identity map on F. Then for $a \in F$, $\sigma^m(a) = I(a)$ or $a^{p^m} = a$. $x^{p^m} - x$ can have maximum p^m no of roots however we have $p^n(>p^m)$ no of roots which is a contradiction and we are done.

Proposition 8 :- Any two finite fields of same cardinality are isomorphic.

Proof :- Let F and L be two finite fields such that $|F| = |L| = p^n$ for some prime number p and natural number n. By proposition 7 Both F and L are splitting fields of $x^{p^n} - x$ over \mathbb{F}_p . By isomorphism extension theorem it follows that F and L are isomorphic.

Proposition 9 :- Let F and K be two finite fields and K be an extension of F. Then

(i) K/F is Galois.

(ii) Moreover if char(F) = p, $|F| = p^n$ and $\tau : K \to K$ be such that $\tau(a) = a^{p^n}$, then $(\tau) = \text{Gal}(K/F)$.

Proof :- K/\mathbb{F}_p is Galois by proposition 7. Hence K/\mathbb{F}_p is both normal and separable over \mathbb{F}_p . As $\mathbb{F}_p \subset F \subset K$, K is both normal and separable over F, equivalently K is Galois over F.

Clearly $\operatorname{Gal}(K/F) \leq \operatorname{Gal}(K/\mathbb{F}_p)$. Hence $\operatorname{Gal}(K/F)$ cyclic. Let $[K : F] = m = \operatorname{Gal}(K/F)$ (as K/F is Galois), $[K : \mathbb{F}_p] = t = \operatorname{Gal}(K/\mathbb{F}_p)$ (as K/\mathbb{F}_p is Galois). As m divides t, $\operatorname{Gal}(K/\mathbb{F}_p)$ has exactly one subgroup of order m, which is

 $(\sigma_0^{\frac{t}{m}})$ where $(\sigma_0) = \operatorname{Gal}(K/\mathbb{F}_p)$. $\sigma: K \to K$ defined by $\sigma(a) = a^p$ is a generator of $\operatorname{Gal}(K/\mathbb{F}_p)$ from proposition 7. Thus $\operatorname{Gal}(K/F) = (\sigma^{\frac{t}{m}}) = (\sigma^{[F:\mathbb{F}_p]})$ where $\frac{[K:\mathbb{F}_p]}{[K:F]} = [F:\mathbb{F}_p] = n$ (as $|F| = p^n$). $\operatorname{Gal}(K/F) = (\sigma^n)$. By induction on n we can show that $\sigma^n(a) = a^{p^n} = \tau(a)$.

Proposition 10 :- Let N be an algebraic closure of \mathbb{F}_p . Then

(i) given any positive integer n, there is a unique subfield of N of order p^n .

(ii) If K and L are subfields of N of orders p^m and p^n respectively, then $K \subset L$ iff m divides n.

(iii) When this (ii) happens, L is Galois over K with Galois group generated by $\tau(a)=a^{p^m}$

Proof :- Consider a positive integer n. The set of roots of the polynomial (say S) $x^{p^n} - x$ over \mathbb{F}_p belonging to N has p^n elements. Now if $\alpha, \beta, \beta^{-1} \in S$, then $\alpha^{p^n} = \alpha$ and $(\beta^{-1})^{p^n} = \beta^{-1}$, which implies $(\alpha\beta^{-1})^{p^n} = \alpha^{p^n}(\beta^{-1})^{p^n} = \alpha\beta^{-1}$ or equivalently $\alpha\beta^{-1} \in S$ and $(\alpha+\beta)^{p^n} = \alpha^{p^n} + \beta^{p^n} = \alpha^{p^n} + \beta^{p^n}$ (as char(N) = p) $= \alpha + \beta$ or equivalently $\alpha + \beta \in S$. S is a subfield of N with order p^n . This asserts that there exists a subfield of N with order p^n . Let $F \subset N$ be a field of order p^n . By proposition 7, F is a splitting field of $x^{p^n} - x$ over \mathbb{F}_p . Hence F contains all the roots of $x^{p^n} - x$ or equivalently $S \subset F$. Every $a \in F$ satisfy $a^{p^n} - a = 0$, which implies $F \subset S$. Therefore there is a unique subfield of N of order p^n .

Let $K \subset L \subset N$. $[L : \mathbb{F}_p] = [L : K][K : \mathbb{F}_p]$, so $[K : \mathbb{F}_p]$ divides $[L : \mathbb{F}_p]$ or equivalently *m* divides *n*. Conversely let *m* divides *n*, if $b \in K$, then $b^{p^m} = b$ and $b^{p^n} = b^{p^{mk}}(t \in \mathbb{N}) = b^{(p^m)^t} = b^{p^m \cdot p^m \dots (ktimes) \cdot p^m} = ((((b^{p^m})^{p^m})^{p^m})^{\dots (t-1times)})^{p^m} = b$ (as $b^{p^m} = b$). Hence $b \in L$ by (i) of proposition 10.

when proposition 10(ii) happens, we are done by taking L for K and K for F in proposition 9.

0.2 Galois groups

Definition 1:- Let F be a field. K be a field extension of F. A automorphism τ of K is said to be F-automorphism if τ fixes all the elements in F, i.e., $\tau(a) = a$ for all $a \in F$.

The Galois group K over F is denoted by Gal(K/F) and is defined as the set of all F-automorphisms of K.

Example 1:- Let $F = \mathbb{Q}$ and $K = \mathbb{Q}(\sqrt{2})$. Let $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$, for $a, b \in \mathbb{Q}$, $\sigma(a + b\sqrt{2}) = a + b\sigma(\sqrt{2})$ (as σ fixes all elements in F, in particular a and b). σ is an homomorphism, so $(\sigma(\sqrt{2}))^2 = \sigma((\sqrt{2})^2) = \sigma(2) = 2$. We have two possible values $\sigma(\sqrt{2})$ one is $\sqrt{2}$ and $-\sqrt{2}$. Conversely, if $\sigma(a + b\sqrt{2}) = a + b\sqrt{2}$ or $a - b\sqrt{2}$, σ is F-automorphism of K. Hence $\operatorname{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q}) = \{\sigma_1, \sigma_2\}$, where $\sigma_1(a + b\sqrt{2}) = a + b\sqrt{2}$ and $\sigma_2(a + b\sqrt{2}) = a - b\sqrt{2}$.

Proposition 1 :- Let K = F(X) be a field extension of F which is generated by X. If $\sigma, \tau \in \text{Gal}(K/F)$ with $\sigma|_X = \tau|_X$, then $\sigma = \tau$.

Proof :- Let $a \in K$. Then there exists $n \in \mathbb{N}$ and $a_1, a_2, ..., a_n \in X$ such that $a \in F(a_1, a_2, ..., a_n)$. So there exists $f, g \in F[x_1, x_2, ..., x_n]$ with $a = \frac{f(a_1, a_2, ..., a_n)}{g(a_1, a_2, ..., a_n)}$ and $g(a_1, a_2, ..., a_n) \neq 0$. Let $f(x_1, x_2, ..., x_n) = \sum b_{i_1, i_2, ..., i_n} x_1^{i_1} x_2^{i_2} ... x_n^{i_n}$ and $g(x_1, x_2, ..., x_n) = \sum c_{i_1, i_2, ..., i_n} x_1^{i_1} x_2^{i_2} ... x_n^{i_n}$ where each coefficient lies in F. $\sigma(a) = \sum \frac{b_{i_1, i_2, ..., i_n} \sigma(a_1)^{i_1} \sigma(a_2)^{i_2} ... \sigma(a_n)^{i_n}}{c_{i_1, i_2, ..., i_n} \sigma(a_1)^{i_1} \sigma(a_2)^{i_2} ... \sigma(a_n)^{i_n}}$ $= \sum \frac{b_{i_1, i_2, ..., i_n} \tau(a_1)^{i_1} \tau(a_2)^{i_2} ... \tau(a_n)^{i_n}}{c_{i_1, i_2, ..., i_n} \tau(a_1)^{i_1} \tau(a_2)^{i_2} ... \tau(a_n)^{i_n}}$ (since σ and τ fix F, preserve addition and multiplication) = $\tau(a)$.

Proposition 2 :- Let K and L be two field extensions of F. $\tau : K \to L$ be an F-automorphism. Let $\alpha \in K$ be algebraic over F. If f(x) is a polynomial over F with $f(\alpha) = 0$ then

(i) f(τ(α)) = 0. In particular τ permutes the roots of min(F, α)
(ii) min(F, α) = min(F, τ(α)).

 $\min(F, \tau(\alpha))$ divides $\min(F, \alpha)$ as $\min(F, \alpha)(\tau(\alpha)) = 0$. $\min(F, \alpha)$ is irreducible and is not a constant polynomial, which implies $\min(F, \alpha) = \min(F, \tau(\alpha))$.

Proposition 3 :- If [K : F] is finite, then Gal(K/F) is finite.

Proof :- Let $\{\alpha_1, ..., \alpha_n\}$ be a basis of K over F (where [K : F] = n). The every element of K is a unique linear combination of $\alpha_1, ..., \alpha_n$ which implies $K \subset F(\alpha_1, ..., \alpha_n)$. Further more $\alpha_1, ..., \alpha_n \in K$ and $F \subset K$, so $F(\alpha_1, ..., \alpha_n) \subset K$. $K = F(\alpha_1, ..., \alpha_n)$. By proposition 1 any F-automorphism of K is determined by where it sends α_i , $i \in \{1, 2, ..., n\}$. Let $\tau \in \text{Gal}(K/F)$ and a fixed i, from proposition 2 it follows that τ permutes the roots $\min(F, \alpha_i)$. $\tau(\alpha_i)$ can take at most deg($\min(F, \alpha_i)$) values, also choices of i is finite, which shows that there are finitely choices of F-automorphism of K. Hence Gal(K/F) is finite.

0.3 Some solved questions

Q1 :- Let $n \in \mathbb{N}$. Show that K is a splitting field over F for a set $\{f_1, f_2, ..., f_n\}$ of polynomials in F[x] if and only if K is a splitting field over F for the single polynomial $f_1 f_2 ... f_n$.

Proof:- Let $S = \{f_1, f_2, ..., f_n\}$ and X be the set of all roots of all polynomial in S. K be a splitting field over F for S. Then K = F(X) and for each $i \in \{1, 2, ..., n\}$, f_i splits over F. i.e. $f_i = a_i \prod_{j(i)} (x - \alpha_{j(i)})$ where $j(i) \in \{1, ... \deg(f_i)\}$, $a_i \in F$ and $\alpha_{j(i)} \in K$. $f = f_1 f_2 ... f_n$ (say) $= \prod_i \prod_{j(i)} (x - \alpha_{j(i)})$. Since each factor of fis linear f splits over F.

If $\alpha \in K$ is a root of f then $f(\alpha) = 0$ i.e. there exists one k such that $f_k(\alpha) = 0$

where 0 is the additive identity of F which implies $\alpha \in X$. Conversely if $\alpha \in X$, for some $k f_k(\alpha) = 0$ which shows $f(\alpha) = 0$. This shows that the set of all roots of f(say Y) is equals to X. Hence K = F(Y). K is a splitting field of f.

Let K be a splitting field of f. let $f_i = a_i \prod_{j(i)} (x - \alpha_{j(i)})$ where $a_i \in F$ and $\alpha_{j(i)} \in L$, L is a splitting field of S. f_i divides f, $(x - \alpha_{j(i)})$ divides f i.e. $(x - \alpha_{j(i)})$ is a linear factor of f. Since f splits over K, it implies $\alpha_{j(i)} \in K$. f_i splits over K. Also set of all roots of f is same as X. Hence K is a splitting field of S.

Q2 :- Let K be a splitting field of a set S of polynomials over F. If L is a subfield of K containing F for which each $f \in S$ splits over L, Show that L = K.

Proof :- Let X be the set of all roots of all $f \in S$. Since K is a splitting field of F, K = F(X). $f \in S$ splits over L, implies all roots of f lies in L i.e. $X \subset L$. $L(X) = \cup \{L(a_1, a_2, ..., a_n) : a_1, a_2, ..., a_n \in X\} = \cup L = L$ since $X \subset L$ we have $L(a_1, a_2, ..., a_n) = L$. $K = F(X) \subset L(X) = L \subset K \Rightarrow L = K$

Q3 :- If $F \subseteq L \subseteq K$ are fields and if K is a splitting field of $S \subseteq F[x]$ over F, show that K is also a splitting field for S over L.

Proof :- Let $f \in S \subseteq F[x] \subseteq L[x]$, since K is a splitting field of S over F $f = a \prod_i (x - \alpha_i)$ for some $\alpha_i \in K$ and $a \in F \subseteq L$. Hence $f \in S \subseteq L[x]$ splits over K. Let X be the set of all roots of all $f \in S$, then K = F(X). $f \in S$ splits over K this implies all roots of f lies in L i.e. $X \subset K$. $K = F(X) \subseteq$ $L(X) \subseteq K(X) = K$ as $X \subset K$. $\Rightarrow K = L(X)$. K is a splitting field for S over L.

Q4(a) :- Let K be algebraically closed field extension of F. Show that algebraic closure of F in K defined as $\{a \in K : a \text{ is algebraic over } F\}$ is an algebraic closure of F.

(b) If $\mathbb{A} = \{a \in \mathbb{C} : a \text{ is algebraic over } \mathbb{Q}\}$, then assuming that \mathbb{C} is algebraically closed, show that \mathbb{A} is an algebraic closure of \mathbb{Q} .

Proof :- Let $\overline{F} = \{a \in K : a \text{ is algebraic over } F\}$. Clearly $F \subset \overline{F}$ since for $a \in F \subset K$, $f(x) = x - a \in F[x]$ with f(a) = 0. Let $a, b \in \overline{F}$. Then F(a, b) being a finite extension of F, is algebraic over F. So $F(a, b) \subset L(a, b) = L$ and since $a + b, a - b, ab, a/b \in F(a, b), L$ is closed under the field operations. Let M be an proper algebraic extension. M is an algebraic extension since \overline{F} is algebraic over F. Then there exists $c \in M \overline{F}$ such that c is algebraic over F. $c \in K$ since $\min(c, F)$ splits over K as K is an algebraically closed field extension of F. This implies $c \in \overline{F}$, which is a contradiction. Hence \overline{F} does not have any algebraic extension other than itself. Hence \overline{F} is an algebraic closure of F.

(b) We are done by taking $F = \mathbb{Q}$ and $K = \mathbb{C}$ in 4(a).

Q5 :- Give an example of fields $F \subset K \subset L$ where L/K and K/L are normal but L/F is not normal.

Answer :- Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$, $L = \sqrt[4]{2}$. [K : F] = 2 since $\min(\mathbb{Q}, \sqrt{2}) = x^2 - 2$. [L : F] = 4 since $\min(\mathbb{Q}(\sqrt[4]{2}) = x^4 - 2)$

Q6 :- Let f(x) be an irreducible polynomial over F of degree n and let K be an field extension of F such that [K : F] = m. If gcd(n, m)=1, then show that f is irreducible over K.

Proof :- If n = 1, then clearly f is irreducible over K. Without loss of generality we can assume that n > 1. Let α be a root of f(x). Consider $K(\alpha)$ as an extension of K and $F(\alpha)$ as an extension of F. Note that deg(min(c, F)) = n if not then $deg(min(\alpha, F)) < n$. $f(\alpha) = 0$ implies that $min(\alpha, F)$ divides f. Hence $f(x) = min(\alpha, F)(x)g(x)$ where $g \in F(x)$ and deg(g) > 0, which is a contradiction since f is irreducible over F. $n = deg(min(\alpha, F) = [F(\alpha) : F]$. Now $[K(\alpha) : F] = [K(\alpha) : F(\alpha)][F(\alpha) : F] = [K(\alpha) : K][K : F]$ $\Rightarrow n[K(\alpha) : F(\alpha)] = m[K(\alpha) : K]$ $\Rightarrow [K(\alpha) : F(\alpha)] = \frac{m[K(\alpha) : K]}{n}$ $\Rightarrow n$ divides $[K(\alpha) : K] = deg(min(\alpha, K)) = t(say)$ (n does not divide m if not

 $1 = \gcd(m, n) = n > 1$ a contradiction) $\Rightarrow n \le t$.

Suppose f is reducible over K then there exists some $f_1(x), f_2(x) \in K[x]$ such that $f(x) = f_1(x)f_2(x)$ and $0 < \deg(f_1), \deg(f_2) < n$. Since $f(\alpha) = 0$ without loss of generality we can assume $f_1(\alpha) = 0$. This implies $\min(\alpha, K)$ divides f_1 , hence $\deg(\alpha, K) \leq \deg(f_1) < \deg(f) = \deg(\min(\alpha, F) \leq \deg(\min(\alpha, K))$ i.e. $t \leq \deg(f_1) < n \leq t$ a contradiction. Hence f is irreducible over K.

Q7 :-Show that $x^5 - 9x^3 + 15x + 6$ is irreducible over $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

Proof :- By taking 3 as a prime we see by Eisenstein's criterion that $x^5 - 9x^3 + 15x + 6$ is irreducible over \mathbb{Q} . $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2})] = 2[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})]$ since $\min(\sqrt{2},\mathbb{Q}) = x^2 - 2$. $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})] = [\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}(\sqrt{2})]$ (as $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3})) = 2$ since $\min(\sqrt{2}+\sqrt{3},\mathbb{Q}(\sqrt{2}))(x) = (x-\sqrt{2})^2 - 3$.

 $[\mathbb{Q}(\sqrt{2},\sqrt{3}):Q] = 4$. We are done by taking $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2},\sqrt{3})$, $f(x) = x^5 - 9x^3 + 15x + 6$ in Q6.